Biblio

Export 221 results:
Author Title Type [ Year(Asc)]
2021
Grunwald, M., Hermann M., Freiberg F., & Franz M. O. (2021).  Biologically-inspired vs. CNN texture representations in novelty detection. Applications of Machine Learning 2021. 118430I.PDF icon Spie2021.pdf (5.33 MB)
Sick, B., Hothorn T., & Dürr O. (2021).  Deep transformation models: Tackling complex regression problems with neural network based transformation models. Accepted for Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan/Online, 2021.
Arpogaus, M., Voß M., Sick B., Nigge-Uricher M., & Dürr O. (2021).  Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows. ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual. PDF icon Arpogaus2021_Probabilistic_Forecasting.pdf (427.35 KB)
Arpogaus, M., Voß M., Sick B., Nigge-Uricher M., & Dürr O. (2021).  Probabilistic short-term low-voltage load forecasting using bernstein-polynomial normalizing flows. ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual.
Hörtling, S., Dold D., Dürr O., & Sick B. (2021).  Transformation models for flexible posteriors in variational bayes. arXiv preprint. 2106.00528.PDF icon 2106.00528.pdf (1.03 MB)
2020
Griesser, D., Dold D., Umlauf G., & Franz M. O. (2020).  CNN-Based Monocular 3D Ship Detection Using Inverse Perspective. Global Oceans.
Hake, F., Hermann M., Alkhatib H., Hesse C., Holste K., Umlauf G., et al. (2020).  Damage Detection for Port Infrastructure by Means of Machine-Learning-Algorithms. FIG Working Week 2020. PDF icon Fig2020.pdf (876.57 KB)
Kook, L., Herzog L., Hothorn T., Dürr O., & Sick B. (2020).  Deep and interpretable regression models for ordinal outcomes. arXiv preprint. 2010.08376.
Pearse, G. D., Tan A. Y. S., Watt M. S., Franz M. O., & Dash J. P. (2020).  Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data. ISPRS Journal of Photogrammetry and Remote Sensing. 168, 156 - 169.
Herzog, L., Murina E., Dürr O., Wegener S., & Sick B. (2020).  Integrating uncertainty in deep neural networks for MRI based stroke analysis. Medical Image Analysis. 65, 101790.
Kook, L., Herzog L., Hothorn T., Dürr O., & Sick B. (2020).  Ordinal neural network transformation models: deep and interpretable regression models for ordinal outcomes. arXiv e-prints. 2010.08376.
Dürr, O., Sick B., & Murina E. (2020).  Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability.
Dürr, O., Sick B., & Murina E. (2020).  Probabilistic deep learning: With python, keras and tensorflow probability.
Brach, K., Sick B., & Dürr O. (2020).  Single Shot MC Dropout Approximation. ICML Workshop on Uncertainty and Robustness in Deep Learning.

Pages