Biblio
Implicit estimation of Wiener series.
{Machine Learning for Signal Processing XIV, Proc. 2004 IEEE Signal Processing Society Workshop}. 735–744. Franz, Schölkopf_2004_Implicit estimation of Wiener series.pdf (191.86 KB)
(2004). Optimal linear estimation of self-motion - a real-world test of a model of fly tangential neurons.
{SAB02 Workshop on Robotics as Theoretical Biology}.
(2002). A unifying view of Wiener and Volterra theory and polynomial kernel regression.
Neural Computation. 18, 3097 – 3118. Franz, Schölkopf_2006_A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression.pdf (165.97 KB)
(2006). Linear combinations of optic flow vectors for estimating self-motion-a real-world test of a neural model.
{Advances in Neural Information Processing Systems 15}. 1343–1350.
(2003). VS-neurons as matched filters for self-motion-induced optic flow fields.
{New Neuroethology on the Move}. II, 419.
(1998). Aktives Erwerben eines Ansichtsgraphen zur diskreten Repräsentation offener Umwelten.
Fortschritte der {Künstlichen Intelligenz}. 92. Franz et al._1996_Aktives Erwerben eines Ansichtsgraphen zur diskreten Repräsentation offener Umwelten.pdf (63.1 KB)
(1996). Implicit Wiener series for estimating nonlinear receptive fields.
{Proc. 31st Göttingen Neurobiolgy Conf.}. 1199.
(2007). Can fly tangential neurons be used to estimate self-motion?.
{Proc. of the 9th Intl. Conf. on Artificial Neural Networks (ICANN 1999)}. CP 470, 994-999. Franz et al._1999_Can fly tangential neurons be used to estimate self-motion.pdf (170.74 KB)
(1999). A robot system for biomimetic navigation - from snapshots to metric embeddings of view graphs.
{Robotics and Cognitive Approaches to Spatial Mapping}. 38, 297–314.
(2008). Insect-inspired estimation of self-motion.
{Proc. 2nd Workshop on Biologically Motivated Computer Vision (BMCV 2002)}. 2525, 171-180. Franz, Chahl_2002_Insect-inspired estimation of self-motion.pdf (274.5 KB)
(2002). Learning view graphs for robot navigation.
{Proc.\ 1.İntl.\ Conf.\ on Autonomous Agents}. 138 – 147. Franz et al._1998_Learning View Graphs for Robot Navigation.pdf (1.26 MB)
(1997). Robots with cognition?.
{Proc. 6. Tübinger Wahrnehmungskonferenz (TWK 2003)}.
(2003). Biomimetic robot navigation.
Robotics and Autonomous Systems. 30, 133 – 153. Franz, Mallot_2000_Biomimetic robot navigation.pdf (171.77 KB)
(2000). Systematische Merkmalsbewertung in komplexen Ultraschallsignalen mit Lernmaschinen.
Informatik-Spektrum. 35, 348 – 353. Franz et al._2011_Systematische Merkmalsbewertung in komplexen Ultraschallsignalen mit Lernmaschinen.pdf (899.32 KB)
(2012). Supression and creation of chaos in a periodically forced Lorenz system.
Phys. Rev. E. 52, 3558–3565. Franz, Zhang_1995_Supression and creation of chaos in a periodically forced Lorenz system.pdf (1.45 MB)
(1995). Minimalistic visual navigation.
Fortschr.-Ber. VDI Reihe 8.
(1998). Homing by parameterized scene matching.
{Proc. 4th Europ. Conf. on Artificial Life}. 236 – 245.
(1997). Implicit Volterra and Wiener series for higher-order image analysis.
{Advances in Data Analysis 30th Ann. Conf. German Classification Society}. 60.
(2006). Semi-supervised kernel regression using whitened function classes.
{Pattern Recognition, Proc.\ 26th DAGM Symposium}. 3175, 18 – 26. Franz et al._2004_Semi-supervised kernel regression using whitened function classes.pdf (198.7 KB)
(2004). Where did I take that snapshot? Scene-based homing by image matching.
Biol. Cybern.. 79, 191 – 202. Franz et al._1998_Where did I take that snapshot Scene-based homing by image matching.pdf (488.99 KB)
(1998). Implicit Wiener series for capturing higher-order interactions in images.
{Proc. Sensory Coding and the Natural Environment 2004}.
(2004). Volterra and Wiener series.
Scholarpedia. 6, 11307.
(2011). Navigation mit Schnappschüssen..
{Mustererkennung 1998. Proc. of the 20th DAGM-Symposium}. 412-428. Franz et al._1998_Navigation mit Schnappschüssen.pdf (300.5 KB)
(1998). Insect-inspired estimation of egomotion..
Neural Computation. 16, 2245–60.
(2004). Wide-field, motion-sensitive neurons and matched filters for optic flow fields.
Biol. Cybern.. 83, 185 – 197. Franz, Krapp_2000_Wide-field, motion-sensitive neurons and matched filters for optic flow fields.pdf (261.7 KB)
(2000).