Biblio
Efficient approximations for support vector machines for object detection.
{Pattern Recognition, Proc. of the 26th DAGM Symposium}. 54–61. Kienzle, Bakır, Franz_2004_Efficient approximations for support vector machines for object detection.pdf (165.13 KB)
(2004). Implicit estimation of Wiener series.
{Machine Learning for Signal Processing XIV, Proc. 2004 IEEE Signal Processing Society Workshop}. 735–744. Franz, Schölkopf_2004_Implicit estimation of Wiener series.pdf (191.86 KB)
(2004). Implicit Wiener series for capturing higher-order interactions in images.
{Proc. Sensory Coding and the Natural Environment 2004}.
(2004). Insect-inspired estimation of egomotion..
Neural Computation. 16, 2245–60.
(2004). Kernel Hebbian algorithm for single-frame super-resolution.
{Statistical Learning in Computer Vision (SLCV 2004), ECCV 2004 Workshop, Prague}. 135–149. Kim, Franz, Schölkopf_2004_Kernel Hebbian algorithm for single-frame super-resolution.pdf (2.22 MB)
(2004). Learning depth.
{Proc. 7. Tübinger Wahrnehmungskonferenz (TWK 2004)}. 68. Sinz et al Learning depth 2004.pdf (197 KB)
(2004). Learning depth from stereo.
{Pattern Recognition, Proc.\ 26th DAGM Symposium}. 3175, 245 – 252.
(2004). Multivariate Regression via Stiefel Manifold Constraints.
{Pattern Recognition, Proc. of the 26th DAGM Symposium (DAGM 2004)}. 262-269.
(2004). Semi-supervised kernel regression using whitened function classes.
{Pattern Recognition, Proc.\ 26th DAGM Symposium}. 3175, 18 – 26. Franz et al._2004_Semi-supervised kernel regression using whitened function classes.pdf (198.7 KB)
(2004). Face detection – efficient and rank deficient.
{Advances in Neural Information Processing Systems 17}. 673–680. Kienzle et al._2005_Face Detection --- Efficient and Rank Deficient.pdf (145.73 KB)
(2005). Iterative kernel principal component analysis for image modeling.
IEEE Trans. PAMI. 27, 1351 – 1366. Kim, Franz, Schölkopf_2005_Iterative Kernel Principal Component Analysis for Image Modeling.pdf (1.98 MB)
(2005). Learning an interest operator from eye movements.
{Proc. Workshop on Bioinspired Information Processing 2005}. Kienzle et al._2006_Learning an Interest Operator from Human Eye Movements.pdf (1.41 MB)
(2005). Implicit Volterra and Wiener series for higher-order image analysis.
{Advances in Data Analysis 30th Ann. Conf. German Classification Society}. 60.
(2006). Learning an interest operator from human eye movements.
{Beyond Patches Workshop, Intl. Conf. on Computer Vision and Pattern Recognition}. 1–8. Kienzle et al._2006_Learning an Interest Operator from Human Eye Movements.pdf (1.41 MB)
(2006). Learning eye movements.
{Proc. Sensory Coding and the Natural Environment 2006}.
(2006). Learning high-order MRF priors of color images.
{Proc. of the 23rd Intl. Conf. on Machine Learning (ICML 2006)}. 617–624. McAuley et al._2006_Learning high-order MRF priors of color images.pdf (981.67 KB)
(2006). A unifying view of Wiener and Volterra theory and polynomial kernel regression.
Neural Computation. 18, 3097 – 3118. Franz, Schölkopf_2006_A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression.pdf (165.97 KB)
(2006). Center-surround filters emerge from optimizing predictivity in a free-viewing task.
{Proc. of the Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007)}.
(2007). How to find interesting locations in video: a spatiotemporal interest point detector learned from human eye movements.
{Lecture Notes in Computer Science: Pattern Recognition (DAGM 2007)}. 405–417. Kienzle et al._2007_How to find interesting locations in video a spatiotemporal interest point detector learned from human eye movements.pdf (377.26 KB)
(2007). Implicit Wiener series for estimating nonlinear receptive fields.
{Proc. 31st Göttingen Neurobiolgy Conf.}. 1199.
(2007). Learning the influence of spatio-temporal variations in local image structure on visual saliency.
{Proc. 10. Tübinger Wahr\-neh\-mungs\-konferenz (TWK 2007)}. 63.
(2007). Nonlinear receptive field analysis: making kernel methods interpretable.
{Proc. of the Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007)}.
(2007). A nonparametric approach to bottom-up visual saliency.
{Advances in Neural Information Processing Systems 19}. 19, 689–696. Kienzle et al._2007_A nonparametric approach to bottom-up visual saliency.pdf (879.52 KB)
(2007). Bats can use echolocation calls for individual recognition.
{Proc. Sensory coding and the natural environment 2008}.
(2008). Plant classification from bat-like echolocation signals.
PLoS Comput.\ Biol.. 4, e1000032. Yovel et al._2008_Plant classification from bat-like echolocation signals.pdf (772.54 KB)
(2008).